IBRNet: Learning Multi-View Image-Based Rendering
—Supplementary Material—
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A. Additional implementation details

Feature extraction network architecture. To render a tar-
get view, our system takes a set of source views and ex-
tracts their features using a network with shared weights.
We implement the feature extraction network using a U-
Net-like architecture, where the encoder is adapted from
ResNet34 [1] as implemented in PyTorch [6]. We replace
all Batch Normalization [2] with Instance Normalization [7]
as in [3], and remove max-pooling and use instead strided
convolutions. Our network is fully convolutional and accepts
input images of variable size. We take a single image of size
640 x 480 x 3 as an example input and present a detailed
network architecture in Tab. 1. Our code and model will be
made available.

Input (id: dimension) Layer

0: 640 x 480 x 3 7 x 7 Conv, 64, stride 2 1
1: 320 x 240 x 64 Residual Block 1 2
2: 160 x 120 x 64 Residual Block 2 3: 80 x 60 x 128
3: 80 x 60 x 128 Residual Block 3 4: 40 x 30 x 256
5: 40 x 30 x 256 3 x 3 Upconv, 128, factor 2 6: 80 x 60 x 128
7
8
9
o

Output (id: dimension)

: 320 x 240 x 64
1160 x 120 x 64

[3, 6]: 80 x 60 x 256 3 x 3 Conv, 128 : 80 x 60 x 128
7: 80 x 60 x 128 3 x 3 Upconv, 64, factor 2 0 160 x 120 x 64
[2, 8]: 160 x 120 x 128 3 x 3 Conv, 64 0 160 x 120 x 64

9: 160 x 120 x 64 1 x 1 Conv, 64 ut: 160 x 120 x 64

Table 1: Feature extraction network architecture. ‘Conv” stands
for a sequence of operations: convolution, rectified linear units
(ReLU) and Instance Normalization [7]. “Upconv” stands for a
bilinear upsampling with certain factor, followed by a “Conv” oper-
ation with stride 1. “[-, -]” represents channel-wise concatenation
of two feature maps. The residual blocks have similar structures
to those in the original ResNet34 [1] design, except that the first
residual block has stride equal to 2 and all Batch Normalization
layers are replaced with Instance Normalization layers. The output
64-dimensional feature map will be split into two feature maps of
32 dimension, which are then used as inputs to the coarse and fine
IBRNet, respectively.

IBRNet network architecture. Fig. 1 shows the detailed
network architecture of IBRNet and the process of predict-

Kyle Genova
Ricardo Martin-Brualla!

2Cornell Tech, Cornell University

1,3 Howard Zhou'

Thomas Funkhouser!3

Pratul Srinivasan!
Noah Snavely'+?

3Princeton University

ing the volume density and color at a single 5D location.
To obtain the density at each 5D location, we first aggre-
gate the multi-view features drawn from source views to
obtain a density feature that encodes the density information
for this point. We then aggregate the density information
of all samples on the ray to enable visibility reasoning for
better density prediction. We implement this ray-wise oper-
ation using our proposed module called “ray transformer”.
Specifically, we first apply positional encoding [8] to all
density features on the ray, so that the network is aware of
the spatial ordering for samples on the ray. We then use
a single multi-head self-attention [8] layer to incorporate
long-range contextual information. Separately, to obtain the
view-dependent color, we predict a set of blending weights
to blend the image colors drawn from source views. IBRNet
is invariant to permutations of source views, and supports a
variable number of source views as well as samples on a ray.

Training details. At training time, we sample points in
space and project them in the source views to fetch the corre-
sponding colors and image features. However, the projected
pixel for a sample may be located outside of the image plane.
In this case, we discount this source view for this sample. If
a point is not projected into the image plane of any source
view, we set the volume density of this point to be zero. If
there are less than 3 samples on a ray that have valid density
values, we ignore this ray in the loss function during training.

For pre-training, We train on eight V100 GPUs with a
batch size of 3,200 to 9,600 rays depending on image resolu-
tion and the number of source views. Within each batch, we
sample rays from eight different scenes. Within each scene,
we sample rays randomly from a single image for training.
Pre-training takes about a day to finish. For fine-tuning, the
time needed is scene-dependent. It takes us about 6 hours on
a single V100 GPU to achieve the reported performance for
each of the Real Forward-Facing [4] scenes. The fine-tuning
stage may be accelerated with better hyperparameters for
optimization.
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Figure 1: IBRNet architecture. NV denotes the number of source views and M is the number of samples on a ray. For each “MLP” box,
(4, j) represents a linear layer with input dimension ¢ and output dimension j. ELU is used between each two adjacent linear layers as the
non-linear activation function. When “MLP” takes in a stack of feature vectors (i.e., feature vectors from all source views), the MLP is
applied to each feature vector with shared weights. “weighted pooling” computes the weighted mean and variance of the N x 32 feature
vector using the learned N x 1 weight vector. The ray transformer module contains a single multi-head self-attention layer with the number
of heads set to 4. Viewing directions shown in the figures are relative viewing directions, i.e., the viewing direction of the query ray relative
to the viewing directions from source views.

Figure 2: Qualitative comparison of our model trained with and without ray transformer. The first and second columns show the
results of our pretrained model without and with the ray transformer module, respectively. The last column shows the ground truth images.
Without ray transformer, the synthesized images exhibit severe “black hole” artifacts especially near occlusion boundaries where the network
fails to infer surface locations correctly. Ray transformer eliminates such artifacts by enabling more informed density prediction.

B. Additional qualitative results Fig. 2 shows that our proposed ray transformer significantly

improves the synthesis quality especially for challenging

Ray transformer. We provide qualitative comparison of regions (e.g., near occlusion boundaries).

our model trained with and without ray transformer in Fig. 2.



Figure 3: Geometry Visualization. We visualize the proxy geometry and synthesized images generated by our pretrained and fine-tuned
models for two scenes leaves and horns. For each scene, the first column shows the ground truth image. The second column shows the
results, i.e., synthesized image (top) and depth map (bottom), using our pretrained model. the last column shows the results of our model
after finetuned on each scene.

Geometry Visualization. We visualize the proxy geometry

by accumulating the predicted density values on each ray.

Fig. 3 shows that our pretrained model produces reasonable
proxy geometry, and the quality of the synthesized images
and the underlying geometry improves when our model is
fine-tuned.

Qualitative results on Realistic Synthetic 360° [5]. We
provide qualitative results of our pretrained and finetuned
model on Realistic Synthetic 360° [5] in Fig. 4. The last
column in Fig. 4 shows a challenging scenario where our
method does not work well.
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Figure 4: Qualitative results on Realistic Synthetic 360° [5]. The first column shows the ground truth images. The second column shows
the synthesized images without per-scene fine-tuning. The last column shows the synthesized images with per-scene fine-tuning. The last
row is a failure case due to sparse source views and complex geometry.
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